
Minerals, Fossils & Crystals

Virtual Museum of Geology

What we will attempt to cover

- Introduction to geology what we should remember from school but don't
- Building and Maintaining a Geology Collection
- Paleontology fossilization and fossils, The Geological Time Scale
- Wisconsin Geology & What to collect here

Science that deals with the Earth's physical structure, composition, history and the processes that act on it.

Geologists:

Mineralogist, sedimentologist, seismologist, petrologist, Volcanologist, hydrogeologist, paleontologist

Archaeologist?

At left :Figure 6. Hebior mammoth at the Kenosha Public Museum, Kenosha WI. Above Figure 7. Lithics from the Hebior site.

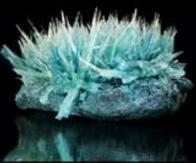
Three Main Rock Types

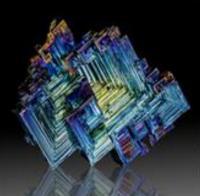
Sedimentary – consists of particles of sand, shells, pebbles and other material fragments. [Ex. Limestone, conglomerate, coquina]

Igneous – formed when magma cools and hardens. [Ex. Basalt, obsidian]

Metamorphic – change due to intense heat & pressure [Ex. Gneiss, marble, quartzite]

Within these categories, rocks are further subdivided – composition, texture, hardness, etc.


What makes up a rock?


ALS

Minerals

- A solid inorganic substance of natural occurrence.
 - Quartz, calcite, olivine, garnet, mica, etc.
- Classified / grouped by variety and species.
- Distinguished by chemical and physical properties: hardness, taste, smell, crystal structure, color, streak, fracture, magnetism, reaction to acid, lustre, habit, radioactivity, specific gravity, cleavage, etc.

Minerals

Currently over 5,800 known mineral types / species.

Mineral varieties within species:

Amethyst is a type of Quartz

Birthstone for February. Irridiation and some substitution of iron for silicon

Amethyst still exhibits most of the same properties as quartz – hardness, crystal shape, etc.

Generally, many minerals together make up a rock.

Sandstone

Basalt

Crystals

- Homogeneous solid substance having a natural geometrically regular form.
 Symmetrically arranged plane faces.
- Atoms arranged in a highly ordered structure – crystal lattice

Where do you find minerals?

All over the Earth.

...on the crust, inside the planet, etc.

In outer space...other planets, meteorites, etc.

Different minerals form in different environments

Collecting Minerals and Fossils

Why do people collect rocks?

How many here collect minerals and fossils?

- Hobby...started collecting as a kid
- For the beauty
- Interest in the natural world
- An investment
- Preservation
- Scientific study

- To pass on to the next generation
- To showcase to others
- Metaphysical properties

Cabinets of Curiosity

Frans Francken the Younger, Chamber of Art and Curiosities 1636

Where to collect...

Rock Shops

The Gem Shop W64N723 Washington Ave Cedarburg, WI

Steven's Rocks & Gifts 134 E. Main Street

Marshall, WI

Burnie's Rock Shop

901 E. Johnson Street Madison, WI

Steven's On Park

636 S. Park Street Madison, WI

Burlington Crystal Gallery

140 E. Chestnut Street Burlington, WI

Rock Garden Rock Shop

231 Cook Street Lake Geneva, WI

Dave's Down to Earth Rock Shop

711 Main Street Evanston, IL

Crystal Garden Rock Shop

418 WI-50 Delavan, WI

Rock Shops continued...

Free Spirit Crystals 4763 N. 124th Street Butler, WI

Angelic Roots Metaphysical 8612 S. Market Place Oak Creek, WI

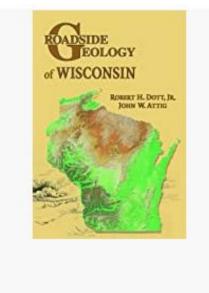
Peacetree Originals 4721 7th Avenue Kenosha, WI

Purchasing off of Ebay, Etsy, Instagram, etc...

- Some of my best and worst geology purchases have been off of the web
- Be careful fakes, scams, outrageous prices, payment security, returns, international seller pressure
- Check feedback, return policy, amount of previous sales, prices
- Buyer beware

Other ways to collect

- Trading with other collectors Clubs, Instagram
- Attending Mineral & Fossil Shows


Wisconsin Geological Society Hart Park Show – May Madison Gem and Mineral Club Show – November Des Plaines Valley Geological Society Show – April-ish Badger Lapidary & Geological Society Show (Janesville) - March

Collecting in the field yourself

- Research where to go
- Take a buddy
- Bring appropriate equipment: rock hammer, first aid kit, water and snacks, sun screen, insect repellant, cell phone
- No State Parks, etc. ask permission for private land
- Backpack or something to place rocks in

Some resources for where to go

Roadside Geology of Wisconsin by Robert H. Dott and John W. Attig | Feb 1, 2004 4.8 ***** ~ (90) Paperback \$2000 • prime FREE delivery Wed, Feb 8 on \$25 of items shipped by Amazon Or fastest delivery Sat, Feb 4 More Buying Choices \$9.00 (22 used & new offers)

 Internet...local geology clubs, university geology departments, research papers, social media (instagram) As like everything else, when purchasing minerals and fossils you need to be careful.

The mineral and fossil market is filled with fakes, altered, mislabeled, unlabeled, renamed and laboratory grown specimens.

A little bit of prior education before purchasing goes a long way.

Beautiful Amber butterfly Fossil Insects Manual Polishing

Brand New

\$7.51 Was: \$7.99 6% off Buy It Now Free shipping from China 30 sold

5Pcs Amber Fossil with Insects Samples Stones Crystal Specimens Home Decorations

Brand New

\$24.95 Buy It Now Free shipping Almost gone 19 sold

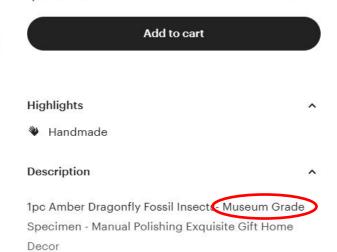
New Find Green Phantom Quartz Crystal Cluster Mineral Specimen Healing 444g h214

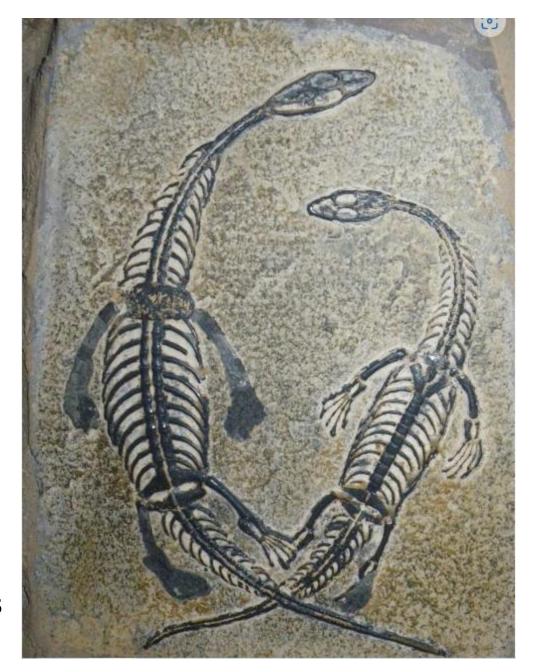
Brand New

\$46.90 Was: \$67.00 30% off or Best Offer Free shipping

from China

Sponsored


Newildthir ♥ Follow 39 sales 5.0 ★★★★★ (3 reviews)


In 3 carts

1pc Amber Dragonfly Fossil Insects-Museum Grade Specimen - Manual Polishing Exquisite Gift Home Decor

\$24.93 \$27.70 (10% Off)

Low in stock

Archosaurs

Titanium Aura

Aqua Aura

Only 1 left and in 1 cart

Blue aura quartz cluster, aqua aura quartz cluster, aura crystal

\$84.53 \$105.66 (20% Off)

Only 1 available

Sale ends in 10 hours

Pay in 4 installments of \$21.13. Klarna. Learn more

Add to cart

Star Seller. This seller consistently earned 5-star reviews, : shipped on time, and replied quickly to any messages they received.

Arrives by Feb 10-15 if you order today. Hooray! This item ships free to the US.

Highlights

Handmade

Agate Slabs

Dyed Agate Slab

 \odot

\$7.99* · In stock · Brand: Kids Love Rocks

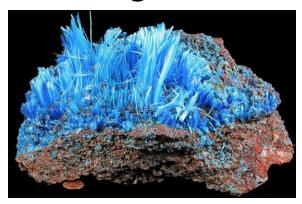
Beautiful Dyed Agate Slab assortment. Small 1" to 2" dyed agate slabs. Colors are blue, pink and purple. Display stands not included.

Last couple of tips about collecting

Label your specimens

No. 62.82	Calcite.
Name.	
Locality.	Mineral Point.
FROM The Collection OF W. W. Jefferis	Wis,

	rugose coral	
Formation	Pentamerus Beds, Hopkinton	n Dolomite
Lower	Middle Silurian	
1.000	Johnson's locality: 27. /4	r
Locality U	S. 61 at Iowa 246, Zwingle	e, Dubuque
Co., Id	wa. SW1 SE1 SW1 SW1 Sec.	36, T87N,
Identified by	Markes E. Johnson	R2E
CHICAGO	NATURAL HISTORY MUSEUM, GEOLOGY	DEPARTMENT
	807 WALKER MUSEUM COLLECTION	specimens


Name of Specimen Collection Number Location Found When Found Age (fossils) Additional Information

No. PE 1136	1 specimen
	NATURAL HISTORY MUSEUM DEPARTMENT OF GEOLOGY
	urus beckii Green
HORIZON: Mid	dle Ordovician, Canajoharie shale
LOC .: Canajoha	rie Creek, New York
	lected 1949 by Sk. K. Roy

COLORADO SCHOOL OF MINES
No. 5600
GOLD (crystallized) - 54 ozs.
Gregory Lode
Gregory Gulch
Black Hawk District
Gilpin County, Colorado
DONOR OR S.H.S John Gregory

Last couple of tips about collecting

Storage

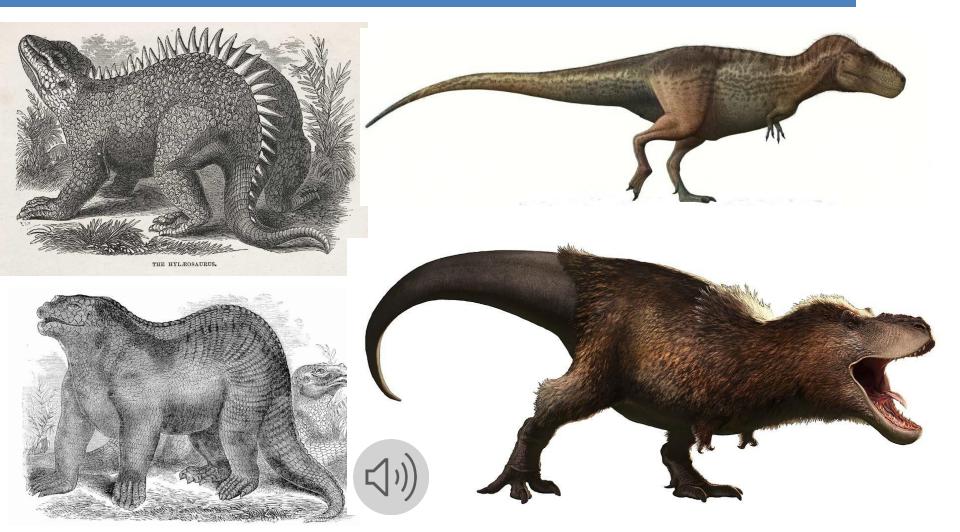
Some specimens are sensitive to humidity chalcanthite

Some specimens are sensitive to light Amethyst

Some specimens are sensitive to heat Crystals can become brittle and crack Some specimens decompose over time

Some specimens decompose over time marcasite

Paleontology



Paleontology

What is paleontology?

The study of remains and fossil traces of past life, which includes fossils, their interactions and environments.

Our knowledge of paleontology has evolved

Fossilization

How do things fossilize?

Things that Commonly Fossilize

Other kinds of fossils

Molds & Casts

gastropod casts

Fossilized Wood - Permineralization

Petrifaction – replacement by silica

Uncommon Fossilization

Trace Fossils (Ichnofossils)

Gives us additional information on how an organism lived.

年 Burrows

Cruziana – Ordovician of Morocco

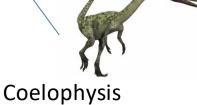
Pseudofossils

Manganese Dendrites - Germany

Pyrite Sun Disk - Illinois

Septarian Nodule

Geological Time Scale


EON ERA			PERIOD		EPOCH		Ма		
					Holocene				
			Quaternary		Pleistocene	Late	-0.01 -		
					Ficiatocene	Early	- 1.8 -		
				Neogene	Pliocene	Late Early	- 3.6 -		
	<u>.</u>	Ľ.			Miocene	Late	- 5.3 -		
		Cenozoic	Tertiary			Middle	-11.2 -		
						Early	- 16.4 -		
		e		Paleogene	Oligocene	Late Early	-28.5 -		
		0				Late	-33.7 -		
					Eocene	Middle	-41.3 -		
						Early	-49.0 - -54.8 -		
					Paleocene	Late	-61.0 -		End Cretaceous
0					Late	Early	-65.0 -		Lifu cretaceous
ŏ		Mesozoic	Cretaceous		Early		-99.0 -		76% of species los
Ň					Late		- 144 - - 159 -		
Phanerozoic			Jurassic		Middle		- 180 -		End Triassic
Ĕ.		8			Early Late		- 206 -	E C	
Ĕ		Σ	Triassic		Middle		- 227 -		80% of species los
•					Early		242 - 248 -	/	End Dormion
			Permian		Late		- 256 -	<u> </u>	End Permian
			Pennsylvanian		Early		- 290 -		96% of species los
			Mississippian				- 323 -		
					Late		- 354 -		Late Devonian
		ĕ			Middle		- 391 -		
		Paleozoic			Late		- 417 -		75% of species los
		ē	Silurian		Early		- 423 -		
					Late		- 443 - - 458 -		End Ordovician
		•	Ordovician		Middle		- 470 -		86% of species los
					D		- 490 -		80% of species 103
			Cambrian		C		- 500 -		
					B		- 512 -		
					٨		- 543 -		
1	ä	Late Middle							
those Brotoros	Proterozoic						- 900 -		
	ě	Lat					-1600 -		
							-2500 -		
Archan	E di	Late					-3000 -		
1	5	Mide					-3400 -		
-		Eart	×				3800?		

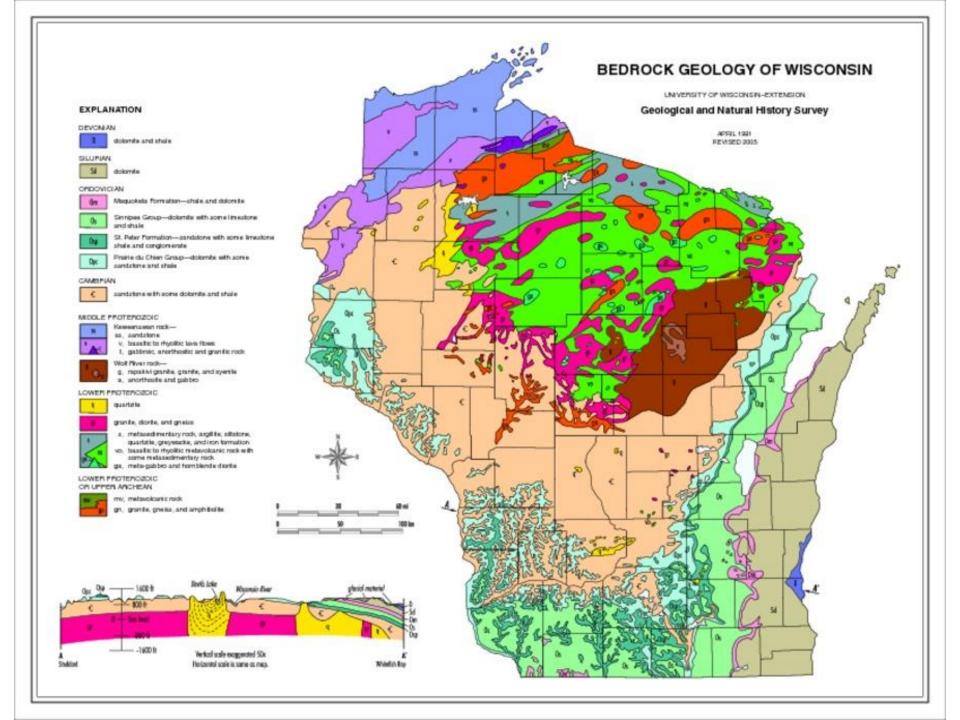
Geological Time Scale

EO	N	ERA	PERIOD		EPOCH		Ma		
			Quaternary		Holocene	0.01			
					Pleistocene	Late Early	-0.01 -		
		zoic	Tertiary	Pe	Pliocene	Late Early	- 1.8 - - 3.6 -		
				Paleogene Neogene	Miocene	Late Middle	- 5.3 - -11.2 - -16.4 -		
		Cenozoic			Oligocene	Early Late Early	- 23.7 -		
		Ŭ			Eocene	Late Middle	-33.7 - -41.3 - -49.0 -		
		U			Paleocene	Early Late Early	-54.8 - -61.0 -		
U					Late		-65.0 -		
Phanerozoic			Cretaceous		Early	-99.0 -			
		ō			Late	- 144 -			
		N	Jurassic		Middle	- 159 -			
		Mesozoic	Julassic		Early	- 180 -			
		<u>e</u>	Triassic		Late	- 206 -			
÷		2			Middle	- 227 -			
•					Early	- 242 -			
			Permian Pennsylvanian		Late	- 248 -			
					Early	- 256 -			
						- 323 -			
			Mississippia	an		- 354 -			
					Late	- 370 -			
		Paleozoic	Devonian Silurian Ordovician		Middle	- 391 -			
					Earty	- 417 -			
					Late	- 423 -			
					Late	- 443 -			
					Middle		- 458 -		
					Early	- 470 -			
					D	- 490 -			
			Cambrian		C	- 500 -			
					B	- 512 -			
					A	- 520 - - 543 -			
	ų.	Late							
=	Proterozoic				- 900 -				
Dria	oter	Middle							
Precambrian	1.1	Early							
S	Archean	Late							
ž	he	Mid		-3000 -					
	5	Earl		-3400 -					
	•	-	10 C				3800?		

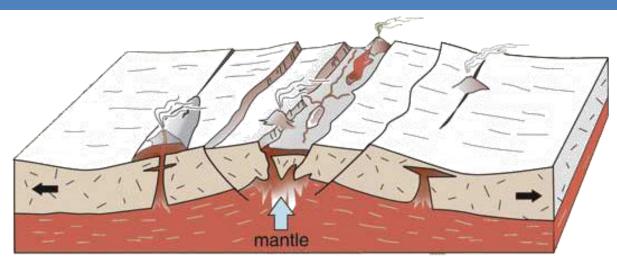
Triceratops 85-66 MYA Late Cretaceous

Stegosaurus 155-150 MYA Jurassic

215 MYA Triassic

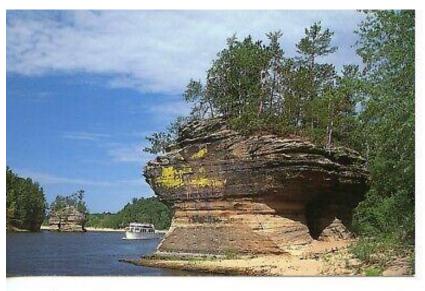

Triceratops and Stegosaurus never saw each other!

Wisconsin Geology


- Proterozoic "Billion Years Old" Volcanics -

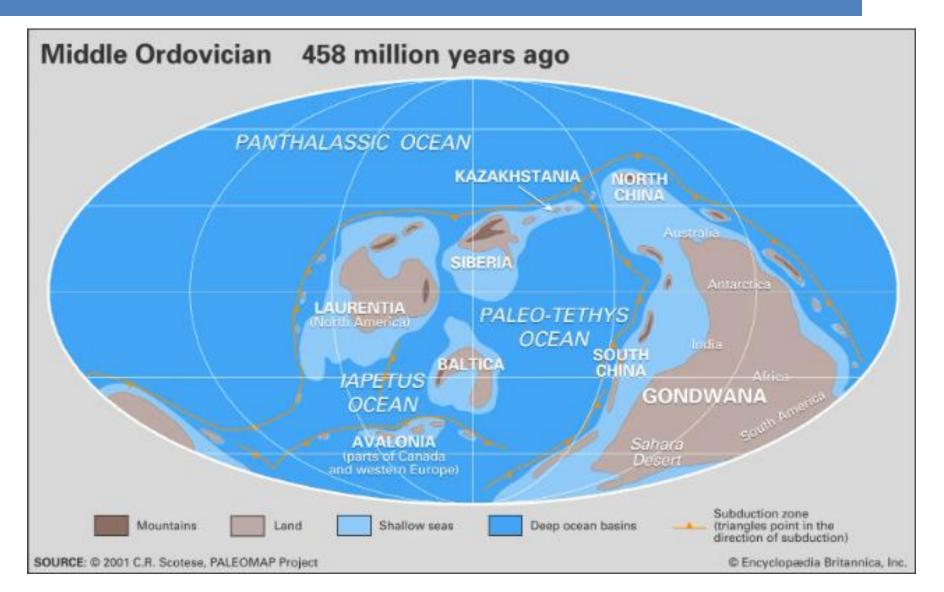
- Shallow Seas Ordovician, Silurian & Devonian -

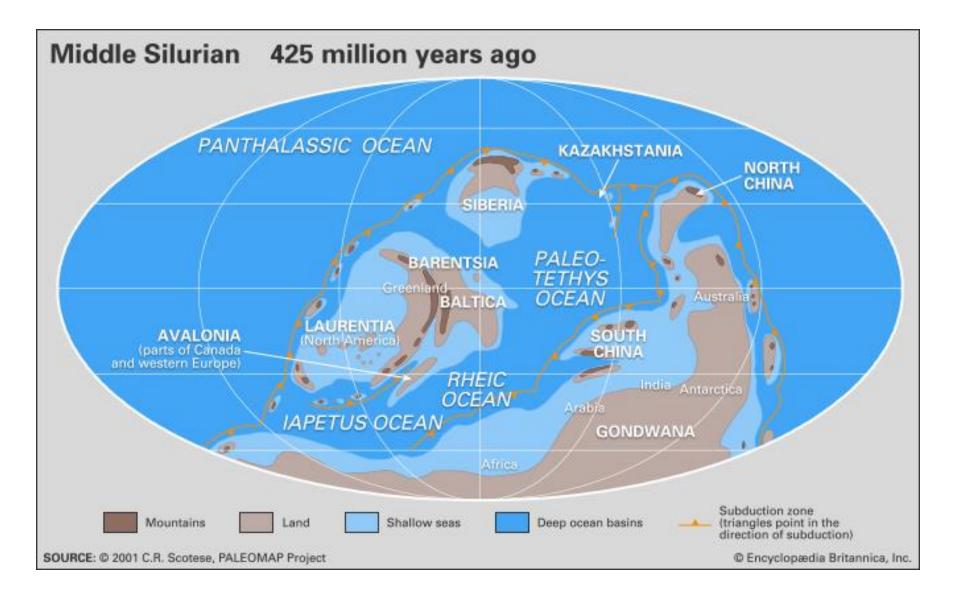
- Glacial Period & The Kettle Moraine -



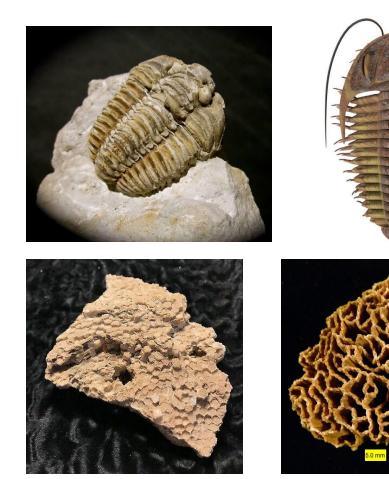
Proterozoic "Billion Years Old" Volcanics

Mantle begins to push up and pull apart the crust.

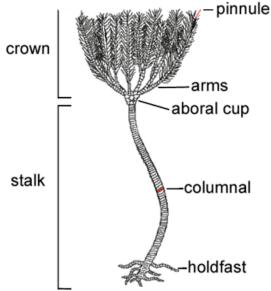



Cambrian Sandstones

Paleontological History of Wisconsin


Field Museum - Chicago

Shallow Tropical Seas

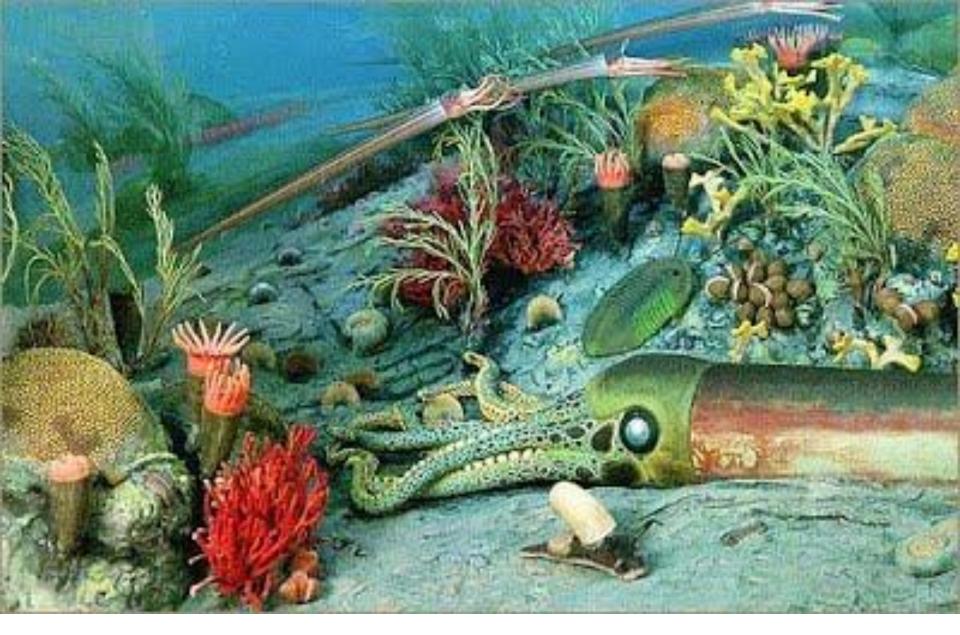


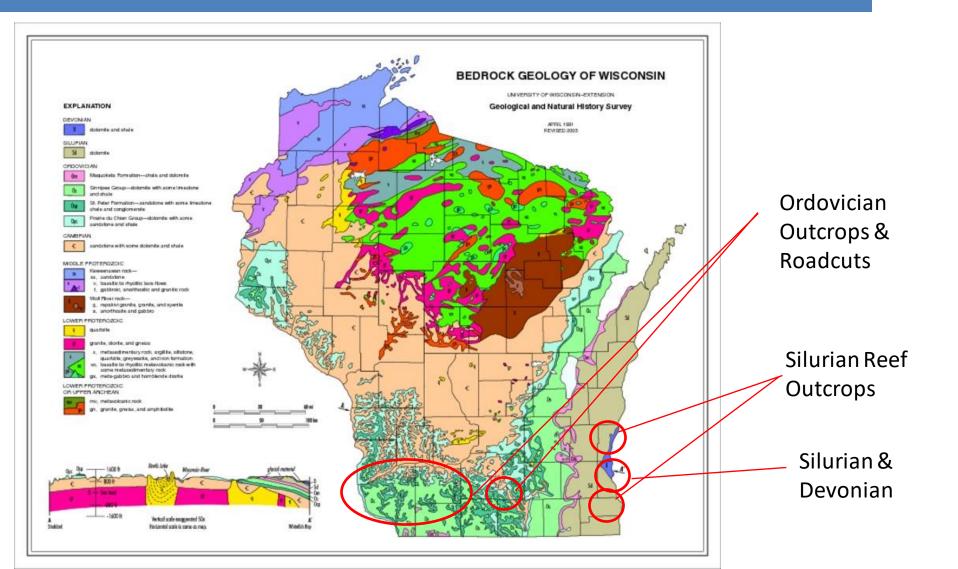
Fossils of Wisconsin's Tropical Seas

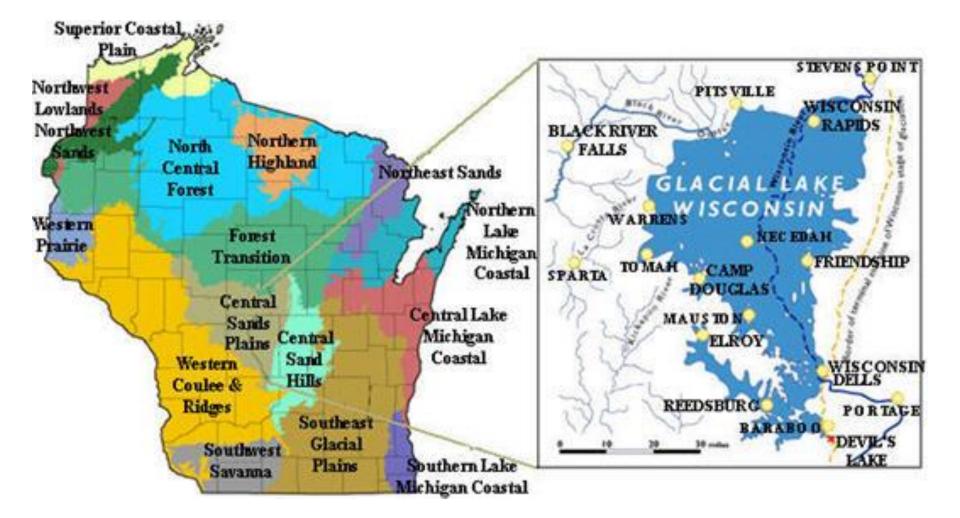
Favosites (honeycomb)


Halysites(chain coral)

Fossils of Wisconsin's Tropical Seas


Fossils of Wisconsin's Tropical Seas



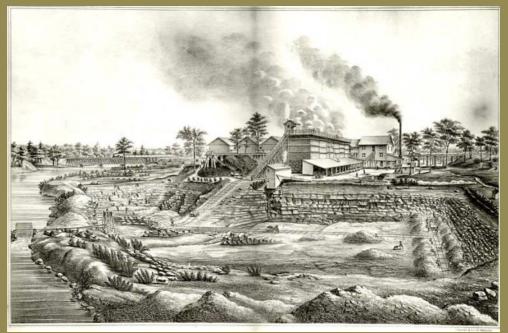

The Ordovician

Fossil Sites in Wisconsin

Glacial Wisconsin ~ 26,000 to 10,000 years ago

Glacial Lake Wisconsin ~ 18,000 years ago

Ice Age Megafauna Wisconsin Glaciation ends around 10,000 years ago



Mineral History of Wisconsin- Mining

Milwaukee Cement Quarry – Milwaukee Public Library collections

Hiram Story Stone Quarry circa early 1880's – American Family Field area – Menomonee Valley

Why no dinosaur fossils in Wisconsin?

